Conductive Wool Yarns by Continuous Vapor Phase Polymeriation of Pyrrole

Abstract

Yarn-shaped supercapacitors are favored due to their small size, high specific capacitance, and light weight. Herein, we reported a distinctive type of ply twist yarn supercapacitor by in situ polymerization of pyrrole on carbon nanotubes (CNTs)/cotton ring spun yarns. CNTs and polypyrrole (PPy) were successfully embedded into the cotton yarns with a ply twist structure. The as-developed electrode exhibited excellent electrical conductivity (20 Ω/cm), good mechanical properties (59.8 MPa, 24.6%), a high specific capacitance of 386.5 mF/cm2 with the current density of 1 mA/cm2, and ideal cycle stability with the retention of 87.8% after 5000 cycles. Meanwhile, the assembled supercapacitor showed a power density of 278.4 μW/cm2 and an energy density of 13.21 μWh/cm2. It also presented outstanding capacitive performance under different angles. This facile ply twist method provided new possibilities for one-dimensional (1D) supercapacitor and flexible wearable electronics applications.

References

  1. Choi CS, Kim SH, Sim HJ, Lee JA, Choi AY, Kim YT, Lepró X, Spinks GM, Baughman RH, Kim SJ (2015) Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci Rep 5:9387

    CAS  PubMed  PubMed Central  Google Scholar

  2. Guo K, Wang X, Hu L, Zhai T, Li H, Yu N (2018) Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure. ACS Appl Mater Interfaces 10(23):19820–19827

    CAS  PubMed  Google Scholar

  3. Zhang Y, Zhang H, Jiang F, Zhou W, Wang R, Xu J, Duan X, Wu Y, Ding Y (2020) Electrochemical assembly of homogenized poly (3,4-ethylenedioxythiophene methanol)/SWCNT nano-networks and their high performances for supercapacitor electrodes. Ionics 26:3631–3642

    CAS  Google Scholar

  4. Li J, Song J, Li X (2020) Rational designing Ni3-xFexS2 nanosheet arrays on Ni foam to enhance supercapacitor performance. Ionics 26:3677–3683

    CAS  Google Scholar

  5. Noh JC, Yoon CM, Kim Y, Jiang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478

    CAS  Google Scholar

  6. Wen J, Li S, Zhou K, Song Z, Li B, Chen Z, Chen T, Guo Y, Fang G (2016) Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J Power Sources 324:325–333

    CAS  Google Scholar

  7. Zhao J, Li H, Li C, Zhang Q, Sun J, Wang X, Guo J, Xie L, Xie J, He B, Zhou Z, Lu C, Lu W, Zhu G, Yao Y (2018) MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45:420–431

    CAS  Google Scholar

  8. Wang C, Zhai S, Yuan Z, Chen J, Zhang X, Huang Q, Wang Y, Liao X, Wei L, Chen Y (2019) A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochim Acta 305:493–501

    CAS  Google Scholar

  9. Zhang S, Yin B, Liu C, Wang Z, Gu D (2018) A lightweight, compressible and portable sponge-based supercapacitor for future power supply. Chem Eng J 349:509–521

    CAS  Google Scholar

  10. Lin Y, Lin H, Deng W, Zhang D, Li N, Wu Q, He C (2018) In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/polyaniline/graphene composite. J Power Sources 384:278–286

    CAS  Google Scholar

  11. Feng J, Li Q, Lu X, Tong Y, Li G (2014) Flexible symmetrical planar supercapacitors based on multi-layered MnO2/Ni/graphite/paper electrodes with high-efficient electrochemical energy storage. J Mater Chem A 2(9):2985–2992

    CAS  Google Scholar

  12. Zhang C, Kremer MP, Andrés AA, Park SH, Mcevoy N, Anasori B, Gogotsi Y, Nicolosi V (2018) Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 28(9):1705506

    Google Scholar

  13. Wei C, Xu Q, Chen Z, Rao W, Fan L, Yuan Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57

    CAS  PubMed  Google Scholar

  14. Chen L, Chen L, Ai Q, Li D, Si P, Feng J, Zhang L, Li Y, Lou J, Ci L (2018) Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers @polypyrrole@graphene film. Chem Eng J 334:184–190

    CAS  Google Scholar

  15. Mao N, Chen W, Meng J, Li Y, Zhang K, Qin X, Zhang H, Zhang C, Qiu Y, Wang S (2018) Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification. J Power Sources 399:406–413

    CAS  Google Scholar

  16. Zhang C, Anasori B, Andrés SA, Park SH, Mcevoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V (2017) Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 29(36):1702678

    Google Scholar

  17. Yu C, Gong Y, Chen R, Zhang M, Zhou J, An J, Lv F, Guo F, Sun G (2018) A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 29:1801203

    Google Scholar

  18. Murat A, Irem M, Ozge K, Selin A (2020) Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics 26:4723–4735

    Google Scholar

  19. Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352(352):174–186

    CAS  Google Scholar

  20. Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159

    CAS  PubMed  Google Scholar

  21. Zheng X, Luo J, Wei L, Wang D, Yang Q (2015) Two-dimensional porous carbon: synthesis and ion-transport properties. Adv Mater 27(36):5388–5395

    CAS  PubMed  Google Scholar

  22. Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Solid-state high-performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep 3:2286

    PubMed  PubMed Central  Google Scholar

  23. Fang Y, Liu J, Yu D, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, Li J (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195(2):674–679

    CAS  Google Scholar

  24. Yang M, Fu C, Xia Z, Chen D, Cai G, Tang B, Wang X (2018) Conductive and durable CNT-cotton ring spun yarns. Cellulose 25(7):4239–4249

    CAS  Google Scholar

  25. Deka BK, Hazarika A, Kim J, Kim N, Jeong HE, Park YB, Park HW (2019) Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem Eng J 355:551–559

    CAS  Google Scholar

  26. Zeng L, Lou X, Zhang J, Wu C, Liu J, Jia C (2019) Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf Coat Technol 357:580–586

    CAS  Google Scholar

  27. Barakzehi M, Montazer M, Sharif F, Norby T, Chatzitakis C (2019) A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochim Acta 305:187–196

    CAS  Google Scholar

  28. Xu J, Wang D, Yuan Y, Wei W, Duan L, Wang L, Xu W (2015) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159

    CAS  Google Scholar

  29. Wu T, Chang H, Lin Y (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639–644

    CAS  Google Scholar

  30. Lima RM, Alcaraz JA, Fernando AG, Helinando PO (2018) Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl Mater Interfaces 10(16):13783–13795

    CAS  PubMed  Google Scholar

  31. Shih CC, Lin Y, Gao M, Wu M, Hsieh HC, Wu N, Chen W (2019) A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J Power Sources 426:205–215

    CAS  Google Scholar

  32. Park H, Kim J, Hong S, Lee G, Lee H, Soon C, Keum K, Jeong Y, Jin S, Kim D, Ha J (2019) Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 13(9):10469–10480

    CAS  PubMed  Google Scholar

  33. Lee J, Zambrano BL, Woo J, Yoon K (2019) Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv Mater:1902532. https://doi.org/10.1002/adma.201902532

  34. Cai G, Yang M, Pan J, Chen D, Xia Z, Wang X, Tang B (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735

    CAS  PubMed  Google Scholar

  35. Yang W, Zeng J, Zhao X, Ma T, Chen J, Li N, Zou H, Chen S (2020) Synthesis of vanadium oxide nanorods coated with carbon nano shell for a high-performance supercapacitor. Ionics 26(2):961–970

    CAS  Google Scholar

  36. Pan J, Yang M, Luo L, Xu A, Tang B, Cheng D, Cai G, Wang X (2019) Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl Mater Interfaces 11(7):7338–7348

    CAS  PubMed  Google Scholar

  37. Huang J, Qian X, An X, Li X, Guan J (2020) Double in situ fabrication of PPy@MnMoO4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose 27:5829–5843

    CAS  Google Scholar

  38. Yang B, Zhao Y, Cai Z, Bahi A, Liu C, Frank K (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25(7):4079–4091

    Google Scholar

  39. Chang Z, Feng D, Huang Z, Liu X (2018) Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chem Eng J 337:552–559

    CAS  Google Scholar

  40. Chen L, Li D, Chen L, Si P, Feng J, Zhang L, Li Y, Lou J, Ci L (2018) Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon 138:264–270

    CAS  Google Scholar

  41. Li Z, Tian M, Sun X, Zhao H, Zhu S, Zhang X (2019) Flexible all-solid planar fibrous cellulose nonwoven fabric-based supercapacitor via capillarity-assisted graphene/MnO2 assembly. J Alloys Compd 782:986–994

    CAS  Google Scholar

  42. Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6(21):1600969

    Google Scholar

  43. Jose GT, Carol C (2018) Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT: PSS fibres. Mater Des 155:194–202

    Google Scholar

  44. Jincy PJ, Kuo D, Lee R (2019) Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 26:4495–4513

    Google Scholar

  45. Luo L, Chen Z, Ke H, Sha S, Cai G, Li D, Yang H, Yang X, Zhang R, Li J, Li Y, Xu J, Xu W, Wei Q (2019) Facile synthesis of three-dimensional MgFe2O4/graphene aerogel composites for high lithium storage performance and its application in full cell. Mater Des 182:108043

    CAS  Google Scholar

  46. Muhammad AA, Nur HN, Shalini K, Yusaran S (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des:108199. https://doi.org/10.1016/j.matdes.2019.108199

  47. Zhang C, Chen Z, Rao W, Fan L, Xia Z, Xu W, Xu J (2019) A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose 26:1169–1181

    CAS  Google Scholar

  48. Dubal DP, Pedro GR (2018) All nanocarbon Li-Ion capacitor with high energy and high- power density. Mater Today Energy 8:109–117

    Google Scholar

  49. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee J, Kim S, Lee Y (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7):5940–5947

    CAS  PubMed  Google Scholar

  50. Hu M, Li Z, Li G, Hu T (2017) All-solid-state flexible fiber-based MXene supercapacitors. Adv Mater Technol 2(10):1700143

    Google Scholar

  51. Sim HJ, Choi C, Lee DP, Kim H, Yun J, Kim J, Kang T, Ovall R, Baughman RH, Kee CW, Kim S (2018) Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47:385–392

    CAS  Google Scholar

  52. Meng Y, Zhao Y, Hu Y, Cheng H (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331

    CAS  PubMed  Google Scholar

  53. Li X, Zang X, Li Z, Li X, Li P, Sun P, Lee X, Zhang R, Huang Z, Wang K, Wu D, Kang F, Zhu H (2013) Large-area flexible core-shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Adv Funct Mater 23(38):4862–4869

    CAS  Google Scholar

  54. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652

    CAS  PubMed  Google Scholar

Download references

Funding

This work was supported by the Natural Science Foundation of Hubei Province (Grant No. 2019CFB290), the Scientific Research Project of Hubei Provincial Department of Education (Grant No. Q20191701), and Hubei Province Technical Innovation Special Project (2019AAA005).

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Lei Luo, Guangming Cai or Xin Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, B., Deng, Z., Bi, S. et al. In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics 27, 279–288 (2021). https://doi.org/10.1007/s11581-020-03784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s11581-020-03784-2

Keywords

  • CNT/cotton yarn
  • Supercapacitor
  • Nanocomposites
  • Conductivity
  • Electrochemical

vosburghupprow.blogspot.com

Source: https://link.springer.com/article/10.1007/s11581-020-03784-2

0 Response to "Conductive Wool Yarns by Continuous Vapor Phase Polymeriation of Pyrrole"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel